A New Method to Infer Causal Phenotype Networks Using QTL and Phenotypic Information

نویسندگان

  • Huange Wang
  • Fred A. van Eeuwijk
چکیده

In the context of genetics and breeding research on multiple phenotypic traits, reconstructing the directional or causal structure between phenotypic traits is a prerequisite for quantifying the effects of genetic interventions on the traits. Current approaches mainly exploit the genetic effects at quantitative trait loci (QTLs) to learn about causal relationships among phenotypic traits. A requirement for using these approaches is that at least one unique QTL has been identified for each trait studied. However, in practice, especially for molecular phenotypes such as metabolites, this prerequisite is often not met due to limited sample sizes, high noise levels and small QTL effects. Here, we present a novel heuristic search algorithm called the QTL+phenotype supervised orientation (QPSO) algorithm to infer causal directions for edges in undirected phenotype networks. The two main advantages of this algorithm are: first, it does not require QTLs for each and every trait; second, it takes into account associated phenotypic interactions in addition to detected QTLs when orienting undirected edges between traits. We evaluate and compare the performance of QPSO with another state-of-the-art approach, the QTL-directed dependency graph (QDG) algorithm. Simulation results show that our method has broader applicability and leads to more accurate overall orientations. We also illustrate our method with a real-life example involving 24 metabolites and a few major QTLs measured on an association panel of 93 tomato cultivars. Matlab source code implementing the proposed algorithm is freely available upon request.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causal Graphical Models in Systems Genetics: a Unified Framework for Joint Inference of Causal Network and Genetic Architecture for Correlated Phenotypes.

Causal inference approaches in systems genetics exploit quantitative trait loci (QTL) genotypes to infer causal relationships among phenotypes. The genetic architecture of each phenotype may be complex, and poorly estimated genetic architectures may compromise the inference of causal relationships among phenotypes. Existing methods assume QTLs are known or inferred without regard to the phenoty...

متن کامل

Causal Graphical Models in Systems Genetics: a Unified Framework for Joint Inference of Causal Network and Genetic Architecture for Correlated Phenotypes1

Causal inference approaches in systems genetics exploit quantitative trait loci (QTL) genotypes to infer causal relationships among phenotypes. The genetic architecture of each phenotype may be complex, and poorly estimated genetic architectures may compromise the inference of causal relationships among phenotypes. Existing methods assume QTLs are known or inferred without regard to the phenoty...

متن کامل

Causal Graphical Models in System Genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes

Causal inference approaches in systems genetics exploit quantitative trait loci (QTL) genotypes to infer causal relationships among phenotypes. The genetic architecture of each phenotype may be complex, and poorly estimated genetic architectures may compromise the inference of causal relationships among phenotypes. Existing methods assume QTLs are known or inferred without regard to the phenoty...

متن کامل

Inferring causal phenotype networks from segregating populations.

A major goal in the study of complex traits is to decipher the causal interrelationships among correlated phenotypes. Current methods mostly yield undirected networks that connect phenotypes without causal orientation. Some of these connections may be spurious due to partial correlation that is not causal. We show how to build causal direction into an undirected network of phenotypes by includi...

متن کامل

Prediction of user's trustworthiness in web-based social networks via text mining

In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014